
Project Profile

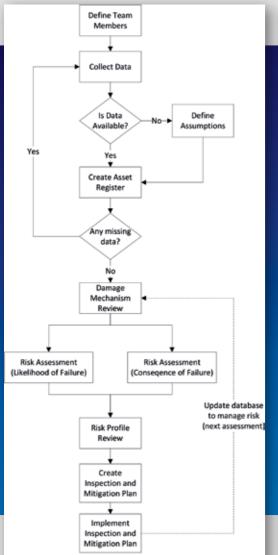
Utama

Inspection and Engineering company

"RBI (Risk Based Inspection)
For Onshore Plant

Contact:

Wisma PMI 3rd & 4th Floor
JI. Wijaya I No. 63 Kebayoran Baru
Jakarta Selatan 12170


* Move to new building an April 2015
Graha Trihasco
JIn. Puri Sakti I No. 30 Cipete Selatan
(Antasari) Jakarta Selatan 12410
INDONESIA

Telp: +62 21 7204105 Fax: +62 21 7255584 info@trihasco.com www.trihasco.com

"RBI (Risk Based Inspection) For Onshore Plant "

RBI (Risk-Based Inspection) method represents the next generation of inspection approaches and interval setting, recognizing that the ultimate goal of inspection is the safety and reliability of operating facilities. RBI, as a risk-based approach, focuses attention specifically on the equipment and associated deterioration mechanisms which represent the most risk to the facility.

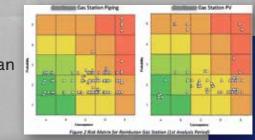
As the part of the ongoing technical services of RBI (Risk Based Inspection) study for our Client, PT Trihasco Utama in cooperation with TWI have performed a RBI assessment of piping and pressure vessels located at Sumatera

1 3 Phase 2 Gas Uft 3 Wet Crude 4 Drain (3) 5 Wet gas 6 Water							Damage 1	Aechamisma.						
Fluid Service		Mecha Mecha		isterra	Uniform or 1	acallised N	teta) Lass	Environmen Crackin	rtal Assisted vg (EAC)	Note A	P1571	External Metal Loss		
		Eresion Corrector	Vibration Induced Fatigue	Galvenic	CO ₄ Corrosion	MIC	Other Metal Loca	SSC/SOHIC/ SWC	Hydrogen Induced Cracking	Under Deposit Attack (Metal Thinning)	Water Corrosion	Atmospheric Corrosion	Corrector Linder Insulation	
1	3 Phase	X	Jan A		X	×		X(2)	X(2)		ý	X	d	
2	Gas Uft	- DR	ğ	2	×			X(2)	X(2)			X	3	
3	Wet Crude	X	2.5	4	×			X(2)	X(2)		9.0	x	1 8	
4	Drain (3)		design and ne for all systems leadly	8	×	X		X(2)	X(2)		X	x	8	
5	Wet gas		64 -	2 _	×	×		X(2)	X(2)			x	- 8	
6	Water		design for all s	alar n octed		x				X	x	x	5.5	
7	Condensate		628		×	X		X(2)	X(2)			×	used on surface	
8	Waste gas		on system addressed individ	dissin	X (1)			K(2)	X(2)			×	is used on surface	
9	Air (4)		2 5 4	8	2407.0			97.01	2.200			×	, e	
10	Lube oil		0.8	1 8		X			0.00	X	x	X	1 8	
11	Fuel Gas		pends to be	8	X (1)			X(2)	X(2)			X	3	
	Rich Glycol		depends on system to be addressed individ	St. S	×		X (5)				X	ж.	, £	
13	Lean Glycol			SA.			X (5)					X-	1.7	

	o Risk profile review (discuss with Clie o Inspection and mitigation planning. o Implementing inspection and mitigation							
Focus/Defocus Variable	Focus/Defocus Method or Action							
Analysis	1. In-depth historical data review							
	2. Remaining life assessment							
	3. Fitness-for-service assessment							
Engineering	Re-rate equipment or component							
	2. Modify equipment or component							
Inspection	Install leak detection system,							
	2. Optimize inspection plan							
	3. Implement on-line monitoring							
Maintenance	Retain equipment or component spare							
	2. Repair/Replace equipment or component							

1. Apply protective coatings

1. Adjust operating conditions


2. Upgrade materials of construction

Scope of Work

The process of RBI Study consisted of a logical and systematic approach to manage the plant's integrity by focusing the management action in prioritizing resources on critical equipment. It required a wide range of data to reliably assess the equipment's probability and consequence of failure and subsequently develop an inspection and/or mitigation plan to manage the risk.

Step of The RBI Study is performed as described bellow:

- Defining team members
- Building initial database for RISKWISE™.
 - Collect data and information to generate asset register
- Define assumption for data and information which is not available
- · Create asset register.
- · Collect inspection history then summarize and enter the summary into the RISKWISE database.
- Site visit to verify RBI scope and collect incomplete data undertake Damage Mechanism review, determine Remaining Life and input data into RISKWISE™ Potential Damage Mechanisms for each component were identified based on the design, operating data, inspection results and expert judgment.
- RBI Assessment:
- o Conduct risk assessment by determination of the likelihood and consequence of failure LoF and CoF)
- ent)
- tion plan

		Figure 2 Risk Matrix for Rainbu	ten den Joseph LLH. Artedo	S. Person										
	Inspection/Mitigation Due Date Distribution													
		inspection/	Wittigation L	de Date Distr	ibution									
160														
140														
120			_											
100			_											
80				_										
60														
40	_													
20					_									
0	FDF	ASAP	2013	2014	2015	Before Reactivation								
			PV, HE, Heate	er Piping										

		OD	Nom T	Commision	MinT	Increation	CR			Before FDF Estimate Estimate MAWP After FDF																
Ne	Tag No		(mm)		(mm)		(mm/month)	DT (F)	DP F (Psi)	ReqT - DP (mm)	1AP R	LI EL (Months)	Due Date	May-13	May-14	May-13	May-14	Proposed action	OT (F)	OP (Psi)	ReqT - OP (mm)	1AP	RLI (EL (Months)	Due Date	Note
	1 KAQR-704	8.00	12.70	Jan-03	8.40	Jan-13	0.049	165	960	7.9	5B	0 10	Jan-13	8.25	7.66	1005	931	Estimated life assessment		620	5.16	2B	9	66	Oct-13	
																		based on operating pressure								
	2 KAHR-712	6.00	10.97	Jan-03	6.80	Jan-13	0.046	200 1	1200	12.24	5B	0 0	Jan-13	6.66	6.11	1084	991	Estimated life assessment		638	6.63	2B	22	106	Nov-14	
																		based on operating pressure								
	3 MBFR-108	39.00	30.00	Jan-04	29.86	Jul-12	0.038	200 1	1000	30.3	5E	0 0	Jul-12	29.52	29.06	984	969	Estimated life assessment		595	14.91	2E	14	317	Sep-13	
																		based on operating pressure								
	4 MBFR-301 S	18.00	12.70	Jan-88	8.70	Aug-12	0.019	200	440	8.42	3E	1 15	Sep-12	8.55	8.32	454	442	Estimated life assessment		352	6.76	2E	14	102	Oct-13	Operating pressure was assumed 80% design. Should be
																		based on operating pressure								confirmes
	5 MZZK-702	10.00	28.58	Jan-97	20.40	Jan-13	0.061	250 2	2305	22.71	5B	0 0	Jan-13	20.22	19.48	2035	1956	Estimated life assessment		590	6.139	2B	22	233	Nov-14	
																		based on operating pressure								
	6 MAFR-100	40.00	31.75	Jan-05	31.03	Jul-12	0.052	200 1	1000	30.42	5E	0 12	Jul-12	30.56	29.94	993	973	Estimated life assessment		595	17.84	2E	14	253	Sep-13	
																		based on operating pressure								

Material

Operation